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Abstract

We derive two oracle inequalities for regularized boosting algorithms for clas-
sification. The first oracle inequality generalizes and refines a result from [4],
while the second oracle inequality leads to faster learning rates than those of [4]
whenever the set of weak learners does not perfectly approximate the target func-
tion. The techniques leading to the second oracle inequality are based on the well-
known approach of adding some artificial noise to the labeling process.

1 Introduction

One often employed method of finding a classifier with the help of empirical data
D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n is that of regularized boosting, see e.g.,
[11]. In this approach, a family(ei)i∈I of weak classifiersei : X → R is given, and,
with the help ofD, a weighted combinationfw∗ :=

∑
i∈I w∗i ei is constructed, where

w∗ := (w∗i )i∈I is a real-valued family that satisfies

λ
∑
i∈I

|w∗i |+
1
n

n∑
i=1

L(yi, fw∗(xi)) < inf
w

λ
∑
i∈I

|wi|+
1
n

n∑
i=1

L(yi, fw(xi)) + ε (1)

for some regularization parameterλ > 0, some convex loss functionL, e.g. the lo-
gistic loss for classification, and some numeric toleranceε ≥ 0. Here the family of
weak classifiers may, e.g., be the output of some classification algorithms such as neu-
ral nets, decision trees, or support vector machines. In this case, boosting may be
viewed as an alternative to the often used parameter selection step required by these
algorithms. However, the family of weak classifiers may also be a family of particular
simple functions such as decision stumps that are not output of a previous classification
algorithm. We refer to [11] for more information in this regard. Moreover, recall that
the regularization term was motivated by the fact the early boosting methods such as
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AdaBoost may overfit in the presence of label noise, see, e.g., again [11] and the refer-
ences therein. Another approach to resolve this potential overfitting is early stopping,
which has been discussed by [18, 2]

In recent years boosting algorithms have been successfully applied in various ap-
plication areas, such as optical character recognition, natural language processing, face
recognition, cancer detection, and text classification. We refer again to the survey [11]
for more applications and corresponding references. In this regard we note that a partic-
ular nice feature of boosting algorithms is that basically no assumptions on the family
of weak classifiers need to be made. In particular, the input spaceX is not required
to be a subset ofRd, which opens, like for support vector machines, the possibility
to deal with non standard data formats. For support vector machines, however, this
flexibility is only possible, if a reasonable kernel onX is available, which, at least in
some circumstances, may be not the case. In contrast to this, the boosting algorithm (1)
does not need such requirements on its base function class determined by the family of
weak learners, and hence it may be applicable in potentially more situations. Last but
not least, the optimization problem (1) is convex inw, and hence regularized boosting
offers computational properties similar to those of support vector machines. We refer
yet another time to [11] for a detailed list of references. Finally, some more information
on boosting, which complements [11], can be found in [8].

For boosting methods based on optimization problems related to (1), the articles
[10, 4, 1, 18] establish both universal consistency and learning rates, where [4] consid-
ers an algorithm that, up to a discretization and some minor technical details, resembles
(1). So far, however, consistency and learning rates for the original approach described
by (1) have not been established. The first goal of this work is to close this gap by
establishing an oracle inequality for regularized boosting based on (1). From this or-
acle inequality, we then derive universal consistency and learning rates under natural
assumptions on the family(ei)i∈I and the data-generating distributionP, where the
learning rates match those of [4] for the discretized version of (1). As already observed
in [4], these learning rates become better for the logistic loss, if the posterior proba-
bility η of P is bounded away from the levels 0 and 1, i.e., if there is noise in each
label. As a consequence, [4] suggested to add some artificial noise to the labels. Our
second goal of this work is to establish an oracle inequality for this approach. Here
it turns out that, if the family of weak classifiers approximates the target function in
an optimal way, see Lemma 2.3 for a precise statement of optimality, then this new
oracle inequality leads to the same learning rates as our first oracle inequality does. In
the absence of such perfect approximation, however, the new oracle inequalityalways
leads to faster learning rates. Note that this better behavior is of particular interest, if
the used weak classifiers are the output of a classification algorithm, since in this case
perfect approximation can almost never be guaranteed.

The rest of this work is organized as follows. In Section 2 we introduce all nec-
essary concepts, present our two oracle inequalities, and discuss some of their conse-
quences including consistency and learning rates. Section 3 contains all proofs.
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2 Main results

In the first part of this section, we introduce all necessary notions for presenting our
main results. Our first oracle inequality is then presented and discussed in Subsection
2.2, while the second oracle inequality is considered in Subsection 2.3.

2.1 Preliminaries

In the following we always writeY := {−1, 1}. Moreover,X always denotes a com-
plete measurable space andP a distribution onX × Y . We call a measurable function
L : Y ×R→ [0,∞) a loss, and if there exists aϕ : R→ [0,∞) such that

L(y, t) = ϕ(yt) , y ∈ Y, t ∈ R,

we say thatL is a margin-based loss. In this case, we callϕ the representing function
of L. Various loss functions used in classification algorithms are margin-based, here
we only mention the hinge loss, the (truncated) least squares loss, the logistic loss
represented byϕ(t) := ln(1+ exp(−t)), t ∈ R, and the AdaBoost loss represented by
ϕ(t) := exp(−t), t ∈ R. For some simple properties of these losses we refer to [1] and
[14, Chapter 2.3]. Moreover, we need the classification lossLclass : Y ×R → [0,∞)
defined by

Lclass(y, t) := 1(−∞,0](y sign t) , y ∈ Y, t ∈ R,

wheresign 0 := 1 and1A denotes the indicator function of a setA. Clearly,Lclass,
which is used to define the learning goal of binary classification, isnot margin-based.

In the following, we say that a lossL is (strictly) convex or continuous, if and only
if L(y, · ) : R → [0,∞) is (strictly) convex or continuous for ally ∈ Y , respectively.
While all the margin-based losses considered above are both convex and continuous,
Lclass does not satisfy either of these properties. Furthermore, we say that a lossL is
locally Lipschitz-continuous if for alla ≥ 0 there exists a constantca ≥ 0 such that∣∣L(y, t)− L(y, t′)

∣∣ ≤ ca |t− t′| , y ∈ Y , t, t′ ∈ [−a, a] .

Moreover, fora ≥ 0, the smallest such constantca is denoted by|L|a,1. Finally, if
we have|L|1 := supa≥0 |L|a,1 < ∞, we callL Lipschitz continuous. For margin-
based losses, we refer to [14, Lemma 2.25] for some simple connections between
these notions. In particular, recall that convex, margin-based losses are always locally
Lipschitz-continuous. Finally, we say that a margin-based lossL is k-times contin-
uously differentiable, if its representing functionϕ is k-times continuously differen-
tiable.

Given a loss functionL and a functionf : X → R, we often writeL ◦ f for the
functionX × Y → [0,∞) defined by

L ◦ f(x, y) := L(y, f(x)) , y ∈ Y, x ∈ X .
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Now letP be a distribution onX × Y . For a lossL : Y ×R→ [0,∞) we then define
theL-risk of a measurable functionf : X → R by

RL,P(f) :=
∫

X×Y

L
(
y, f(x)

)
dP(x, y)

=
∫

X

η(x)L
(
1, f(x)

)
+

(
1− η(x)

)
L

(
−1, f(x)

)
dPX(x),

wherePX denotes the marginal distribution ofP, andη(x) := P(y = 1|x), x ∈ X,
the posterior probability ofP. Note that these definitions yieldRL,P(f) = EPL ◦ f ,
and depending on the situation we will use either of these notations. Finally, ifP is the
empirical measure of a sample setD = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n of length
n, we usually writeRL,D(f) := RL,P(f). Analogously, we denote the empirical
expectation with respect toD by ED.

Throughout this work the smallest possibleL-risk

R∗L,P := inf
{
RL,P(f)

∣∣ f : X → R measurable
}

is called the Bayes risk with respect toP andL. Furthermore, a measurable function
f∗L,P : X → R with RL,P(f∗L,P) = R∗L,P is called a Bayes decision function.1 For
example, it is well-known thatf∗Lclass,P

(x) = sign(2η(x) − 1), x ∈ X, is the Bayes
decision function for the classification loss. We usually callf∗Lclass,P

the Bayes classi-
fier.

In the following, we call a Banach spaceE that consists of functionsf : X → R

a Banach function space (BFS) overX, and we always denote the closed unit ball of
E by BE . Clearly, reproducing kernel Hilbert spaces (RKHSs) are Banach function
spaces. In order to introduce another type of BFSs we need the notation

‖(wi)i∈I‖`1(I) :=
∑
i∈I

|wi| ,

whereI is an at most countable and non-empty set, and(wi)i∈I ⊂ R is anR-valued
family overI. Clearly, the space

`1(I) :=
{
(wi)i∈I : ‖(wi)i∈I‖`1(I) < ∞

}
is a separable Banach space. With the help of this space, the following lemma, whose
proof can be found in Section 3, introduces the type of BFSs we are most interested in.

Lemma 2.1 Let I be an at most countable and non-empty set, and(ei)i∈I be a family
of bounded functionsei : X → R with ‖ei‖∞ ≤ 1 for all i ∈ I. We define

E :=
{

f : X → R
∣∣ ∃(wi)i∈I ∈ `1(I) with f(x) =

∑
i∈I

wiei(x) for all ∀x ∈ X

}
,

1Note, that unlike some other authors we demand that Bayes decision functions arereal-valued, rather
than extended real-valued. However, in Subsection 2.2, we will also briefly deal with extended real-valued
minimizers.
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where we note that the uniform boundedness of the family(ei)i∈I ensures that the sum
above converges absolutely for everyx ∈ X. Furthermore, forf ∈ E, we write

‖f‖E := inf
{∑

i∈I

|wi| : (wi)i∈I ∈ `1(I) with f(x) =
∑
i∈I

wiei(x) for all ∀x ∈ X

}
.

Then(E, ‖ · ‖E) is a separable Banach function space that consists of bounded func-
tions and we have

‖f‖∞ ≤ ‖f‖E , f ∈ E.

Finally, if all ei, i ∈ I, are measurable, thenE consists of measurable functions.

Bounds on the generalization performance of regularized empirical risk minimizers
often include a complexity measure of the underlying function class. Since in this work
we will use average empirical entropy numbers as a complexity measure, let us briefly
recall the definition of entropy numbers. To this end, let(T, d) be a metric space and
n ≥ 1 be an integer. Then then-th (dyadic) entropy number of(T, d) is defined by

en(T, d) := inf
{

ε > 0 : ∃ s1, . . . , s2n−1 ∈ T such thatT ⊂
2n−1⋃
i=1

Bd(si, ε)
}

,

where we use the conventioninf ∅ := ∞. Moreover, if(T, d) is a subspace of a normed
space(E, ‖ · ‖) and the metricd is given byd(x, x′) = ‖x− x′‖, x, x′ ∈ T , we write

en(T, ‖ · ‖) := en(T,E) := en(T, d) .

Finally, if S : E → F is a bounded, linear operator between the normed spacesE and
F , we writeen(S) := en(SBE , ‖ · ‖F ). Entropy numbers are closely related to the
well-known covering numbers; in fact, both concepts are inverse to each other modulo
constants. We refer to, e.g., [14, Lemma 6.21 & Exercise 6.8] for precise statements
and to [6] and [14, Appendix A.5.6] for several properties of entropy numbers. In the
following, we are only interested in entropy numbers that are computed with respect to
the norm of an empiricalL2-space. To be more precise, letZ be a non-empty set and
D ∈ Zn be a finiteZ-valued sequence of lengthn ≥ 1. ForZ → R, we then define

‖f‖2L2(D) :=
1
n

n∑
i=1

|f(zi)|2 = ED|f |2 ,

and denote the corresponding Hilbert space of equivalence classes byL2(D). Note that
if E is the BFS introduced in Lemma 2.1 andDX ∈ Xn, thenei(id : E → L2(DX))
equals thei-th entropy number of the absolute convex hull of the family(ei)i∈I . By
results from, e.g., [7, 5, 9, 12] the latter can be estimated from the entropy numbers of
the family(ei)i∈I .

2.2 An Oracle Inequality for Regularized Boosting Algorithms

In this subsection, we establish our first oracle inequality for regularized boosting al-
gorithms and discuss some of its consequences.

Let us begin by formally introducing these learning methods.
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Definition 2.2 LetE be a Banach function space overX andL : Y ×R→ [0,∞) be
a convex loss function. Given aλ > 0 and anε ≥ 0, we call a learning method that
assigns to everyD ∈ (X × Y )n a functionfD,λ : X → R such

λ‖fD,λ‖E +RL,D(fD,λ) < inf
f∈E

λ‖f‖E +RL,D(f) + ε (2)

an ε-approximate regularized boosting algorithm (ε-ARBA) with respect toE andL.

Let us briefly check that the definition above matches our notion of regularized
boosting algorithms from the introduction. To this end, we fix the BFSE introduced
in Lemma 2.1. For anw := (wi)i∈I ∈ `1(I), we further definefw :=

∑
i∈I wiei. By

the definition of‖ · ‖E we then immediately obtain

λ‖fw‖E +RL,D(fw) ≤ λ
∑
i∈I

|wi|+RL,D(fw)

for all w ∈ `1(I). Conversely, given anf ∈ E and anε > 0, there exists anw ∈ `1(I)
with f = fw and‖w‖`1(I) ≤ ‖f‖E + ε, and hence we find

λ
∑
i∈I

|wi|+RL,D(f) ≤ λ‖fw‖E +RL,D(f) + ε .

From these two inequalities it is straightforward to check that (2) is equivalent to (1).
However, our definition ofε-ARBAs is not restricted to the BFS of Lemma 2.1. Indeed,
if E is a separable RKHS, we obtain a support vector machine (SVM) whose regular-
ization term is not squared. Recall that such SVMs have been recently investigated in
[3, 13].

If the BFSE considered in (2) is separable and consists of bounded measurable
functions, it is easy to show by an almost literal repetition of the proof of [14, Lemma
6.23] that there exists a measurable version in the sense of [14, Definition 6.2] that
satisfies (2). In the following, wealwaysimplicitly assume that we consider such a
measurable version.

We also need infinite sample versions ofε-ARBAs. To introduce these, we fix a
distribution P on X × Y and assume that the BFSE over X consists of bounded
measurable functions. Then everyfP,λ ∈ E satisfying

λ‖fP,λ‖E +RL,P(fP,λ) < inf
f∈E

λ‖f‖E +RL,P(f) + ε (3)

is called an infinite sample version of theε-ARBA with respect toE andL. Finally,
we define the corresponding approximation error functionA : [0,∞) → [0,∞) by

A(λ) := inf
f∈E

λ‖f‖E +RL,P(f)−R∗L,P , λ ≥ 0.

The following lemma collects some useful properties of the approximation error func-
tion. Here we note that the implication from (5) toA(λ) ≤ cλ for all λ ≥ 0 was
already observed in [4].
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Lemma 2.3 L : Y ×R → [0,∞) be a convex loss,E be a BFS overX that consists
of bounded measurable functions, andP be a distribution onX × Y . Assume thatE
is sufficiently rich in the sense ofinff∈E RL,P(f) = R∗L,P. Then the approximation
error functionA : [0,∞) → [0,∞) is increasing, concave, and continuous. Moreover,
we haveA(0) = 0 and

A(κ)
κ

≤ A(λ)
λ

, 0 < λ ≤ κ, (4)

A(λ) ≤ RL,P(0)−R∗L,P , λ ≥ 0.

In addition,A( · ) is subadditive in the sense of

A(λ + κ) ≤ A(λ) + A(κ) , λ, κ ≥ 0.

Moreover, for a constantc ≥ 0, we haveA(λ) ≤ cλ for all λ ≥ 0 if and only if we
have

inf
f∈cBE

RL,P(f) = R∗L,P . (5)

Finally, if there exists anh : [0, 1] → [0,∞) with limλ→0+ h(λ) = 0 and A(λ) ≤
λh(λ) for all λ ∈ [0, 1], then we haveA(λ) = 0 for all λ ≥ 0, andRL,P(0) = R∗L,P.

Before we can present our first oracle inequality, we finally need to assume a vari-
ance bound. To formulate the latter, we fix a convex, margin-based lossL with L 6= 0
and a distributionP on X × Y . We defineϕ(−∞) := limt→−∞ ϕ(t) andϕ(∞) :=
limt→∞ ϕ(t), whereϕ is the representing function ofL, and extendL to Y × [−∞,∞]
in the same way. By the convexity ofL it is then easy to show that there exists a mea-
surable functionf∗L,P : X → [−∞,∞] such thatRL,P(f∗L,P) = R∗L,P. Moreover, we
can choosef∗L,P such thatf∗L,P(x) = ±∞ if and only if P(y = 1|x) ∈ {0, 1}. Let us
fix such anf∗L,P. Then, we say thatL satisfies a variance bound forP, if there exists a
constantc ≥ 1 such that

EP

(
L ◦ f − L ◦ f∗L,P)2 ≤ c ‖L ◦ f‖∞

(
EPL ◦ f − L ◦ f∗L,P) (6)

for all bounded measurable functionsf : X → R. We refer to [1] and [4] for various
examples of margin-based losses, including the logistic loss for classification and the
AdaBoost loss, that satisfy (6). In particular, recall [4, Lemma 19], which provides an
easy sufficient condition for (6) to hold.

With these preparation we can now present our first main result that establishes an
oracle inequality for approximate regularized boosting algorithms.

Theorem 2.4 Let E be a separable Banach function space overX that consists of
bounded measurable functions and whose norm satisfies‖ · ‖∞ ≤ ‖ · ‖E . Moreover,
let P be a distribution onX × Y and L be a margin-based loss that is convex and
Lipschitz continuous with|L|1 ≤ 1. In addition, assume that its representing function
ϕ satisfiesϕ(0) ≤ 1. We further assume thatP andL satisfy the variance bound (6).
We fix ann ≥ 1 and further assume that there exist constantsa ≥ 1 andp ∈ (0, 1)
such that

EDX∼Pn
X

ei

(
id : E → L2(DX)

)
≤ ai−

1
2p
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for all i ≥ 1. Then there exists a constantK ≥ 1 only depending onp andc such that,
for all λ ∈ (0, 1] andτ ≥ 1 satisfyingλn ≥ Kτ andλ1+pn ≥ a2pK, everyλ/2-ARBA
with respect toE andL satisfies

Pn(D ∈ (X × Y )n : λ‖fD,λ‖E +RL,P(fD,λ)−R∗L,P < 2A(λ) + λ
)
≥ 1− e−τ .

Note that it is possible to derive a formula for the constantK from the proof of The-
orem 2.4. However, the formula has a relatively complicated structure, and in addition,
we conjecture, that the resulting values forK are overly pessimistic. Consequently, we
omit the details for the sake of simplicity.

One simple way to ensure the average empirical entropy number assumption of
Theorem (2.4) is to assume a uniform empirical entropy number assumption. Recall
that the latter type of assumption has been widely used in the literature. For example,
for RKHSs, the smoothness of the corresponding kernel can ensure such an entropy
bound, see, e.g., [14, Theorem 6.26]. Moreover, for the BFSs considered in Lemma
2.1, [1, 4] bound these entropy numbers in terms of the VC-dimension of the family
(ei)i∈I . Finally note that although these approaches are easy to use, they may, however,
be sometimes not tight. We refer to [14, Theorem 7.34] for an example in this direction.

Let us now briefly illustrate the consequences of the above oracle inequality forε-
ARBAs that uses the BFS of Lemma 2.1. To this end, we fix a sequence(λn) ⊂ (0, 1]
such thatλ1+p

n n ≥ a2pK for all sufficiently largen ≥ 1. For example, we can choose
λn := n−

1
1+p ln(n + 1) if we do not have good estimates for the values ofa andK.

If the BFSE is rich in the sense ofinff∈E RL,P(f) = R∗L,P for all distributionsP
on X × Y , then theλn-ARBA is universally consistent with respect to the riskRL,P.
Moreover, ifL is classification calibrated in the sense of [1], i.e.ϕ′(0) < 0, then the
λn-ARBA is also universally classification consistent. Finally, note that [14, Theorem
5.31], see also [4, Lemma 16], shows that the richness assumption above is satisfied if
E is dense inL1(µ) for all distributionsµ on X, and by [14, Theorem 5.36] one can
show that for many loss functions the converse implication is also true. In particular,
the logistic loss for classification is such a loss.

Let us now assume that there exists constantsc > 0 and β ∈ (0, 1] such that
A(λ) ≤ cλβ for all λ > 0. The sequence(λn) considered above then yields the

learning raten−
β

1+p for theRL,P-risks of the ARBA. Recall that [1] showed that this

leads to the learning raten−
β

2+2p for the classification risk, and if the distribution sat-
isfies Tsybakov’s noise assumption, see [16], this rate can be improved up to the rate

n−
β

1+p . We refer to [1] and [14, Chapter 3 & Chapter 8] for details. In any case, these
learning rates coincide with the learning rates established in [4] for certain discretized
versions of ARBAs, where we refer to [4, page 884] for the necessary translation of
VC-dimension bounds to entropy number bounds. Finally, [4, Corollary 9] shows that
these learning rates are asymptotically optimal ifE is built from decision stumps, the
logistic loss is used, and the functionf∗L,P : X → [−∞,∞] is of bounded variation.
Note that the latter implies that the posterior probabilityη : X → [0, 1] is bounded
away from zero and one and thatβ = 1. In order to artificially enforce the former, [4]
suggests to add a coin flipping noise to the labels. In the following subsection, we will
establish an oracle inequality for this approach, which, forβ < 1, leads to improved
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learning rates.

2.3 Oracle Inequalities for two-sided losses

As mentioned at the end of the previous subsection, our goal in this subsection is to
establish an oracle inequality that addresses the idea of adding a coin flipping noise to
the labeling process. The key technique to establish this oracle inequality is to translate
this additive noise into a loss function that enjoys additional properties. With the help
of these properties we can then refine our analysis in the caseβ < 1.

Let us begin by introducing some more notions. Following [14], we say that a loss
L can be clipped atM > 0 if, for all (y, t) ∈ Y ×R, we have

L(y, at ) ≤ L(y, t) ,

whereat denotes the clipped value oft at±M , that is

at :=


−M if t < −M

t if t ∈ [−M,M ]
M if t > M .

(7)

Moreover, we say thatL can be clipped if it can be clipped at someM > 0. Informally
speaking, losses that can be clipped, allow us to restrict our consideration to prediction
values between−M andM . With the help of [14, Lemma 2.23] it is easy to check that
a margin based lossL can be clipped if and only if its representing functionϕ has a
global minimum. Ifϕ is continuous, we can then chooseM to be the smallest value at
which this global minimum is attained.

The following lemma gives a simple criterion when a convex, margin-based loss
has a Bayes decision function for all distributionsP onX × Y .

Lemma 2.5 LetL be a convex, margin-based loss. ThenL can be clipped, if and only
if there exists a Bayes decision functionf∗L,P : X → R for all distributionsP onX×Y .
In this case, there always exists a Bayes decision functionf∗L,P : X → [−M,M ],
whereM > 0 is a real number at whichL can be clipped.

Obviously, neither the logistic loss nor AdaBoost loss can be clipped, and it is well-
known, that they fail to have a Bayes decision function for exactly the distributionsP
that have a noise-free region for the labeling process, i.e,

PX({x : η(x) = 0 or η(x) = 1}) > 0 . (8)

On the other hand, if we have a convex, margin-based lossL it is not hard to see that
there exists a Bayes decision functionf∗L,P for all distributionsP on X × Y that do
not satisfy (8), i.e., for distributions that are noisy everywhere. In addition, this Bayes
decision function isPX -almost surely determined ifL is strictly convex. For example,
for the logistic loss, we have

f∗L,P(x) = ln
η(x)

1− η(x)
, x ∈ X,
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and for the AdaBoost loss we havef∗L,P(x) = 1
2 ln η(x)

1−η(x) , x ∈ X. Clearly, ifη(x) ap-
proaches 0 or 1, these Bayes decision functions become unbounded as we have already
used at the end of Subsection 2.2. Since by [14, Corollary 3.62] every reasonable learn-
ing algorithm based on these loss functions has to approximatef∗L,P, we see that such
algorithms have to approximate potentially unbounded functions. In order to avoid
such a behavior, a commonly used trick, see e.g., [17, page 2280] and [4, page 873],
is to add some noise to the labeling process. More precisely, ifP is a distribution on
X × Y with marginal distributionPX and posterior probabilityη, and0 < δ < 1/2,
we can define a new distributionP(δ) onX × Y by P(δ)

X := PX and

η(δ)(x) := (1− δ)η(x) + δ
(
1− η(x)

)
, x ∈ X.

In other words,P(δ) is constructed by adding some noise of orderδ to the posterior
probabilityη of P. Now note that we have1/2 < η(δ)(x) < η(x), if η(x) > 1/2, and
η(x) < η(δ)(x) < 1/2, if η(x) < 1/2. Consequently, the Bayes classifiers of both
distributionsP andP(δ) coincide. Moreover, it is easy to see thatδ ≤ η(δ)(x) ≤ 1− δ,
i.e.,P(δ) is noisy everywhere. In particular, all convex and margin-based losses have a
Bayes decision function forP(δ).

Our next goal is to encode the above construction into a loss function. To this end,
we need the following definition.

Definition 2.6 LetL be a loss function and0 < δ < 1/2. Then theδ-two-sided version
Lδ : Y ×R→ [0,∞) of L is defined by

Lδ(y, t) := (1− δ)L(y, t) + δL(−y, t) , y ∈ Y, t ∈ R.

Note that, for every distributionP onX × Y and every measurablef : X → R, a
straightforward calculation, see (16) and (17), shows

RLδ,P(f) = RL,P(δ)(f) . (9)

In other words, adding some noise to the posterior probabilities is, in terms of the learn-
ing goals described by the risk functionals, equivalent to using the two-sided version
of a loss function. However, in terms of algorithmic design, there may be a substan-
tial difference in both approaches. Indeed, a straightforward implementation of using
P(δ) would individually flip each labelyi of the training set with probabilityδ whereas
an algorithm based onLδ pretends to seeyi with probability (1 − δ) and−yi with
probabilityδ, simultaneously.

Before we present our oracle inequality for algorithms based onLδ we need a few
more preparations. Let us begin with the following lemma that collects some simple,
yet useful properties of two-sided versions of margin based losses.

Lemma 2.7 Let L be a convex, margin-based loss andδ a real number with0 < δ <
1/2. Then the following statements are true for theδ-two-sided versionLδ of L:

i) Lδ is Lipschitz continuous, or strictly convex if and only ifL is.

10



ii) Lδ can be clipped at

Mδ := inf
{
t ∈ R : Lδ(1, t) ≤ Lδ(1, s) for all s ∈ R

}
. (10)

iii) For every probability measureP onX×Y there exists a Bayes decision function
f∗Lδ,P : X → [−Mδ,Mδ]. In addition, ifL is strictly convex,f∗Lδ,P is uniquely
determined and we have

f∗Lδ,P = f∗L,P(δ) .

With the help of the lemma above we can now introduce the learning methods we
consider in this subsection.

Definition 2.8 Let E be a Banach function space overX, L : Y × R → [0,∞) be a
convex, margin-based loss function, andLδ its δ-two-sided version for some0 < δ <
1/2. Given aλ > 0 and anε ≥ 0, we call a learning method that assigns to every
D ∈ (X × Y )n a functionfD,λ : X → R such

λ‖fD,λ‖E +RL,D(
a
fD,λ) < inf

f∈E
λ‖f‖E +RL,D(f) + ε (11)

a clippedε-approximate regularized boosting algorithm (ε-CARBA) with respect toE
andL. Here, the clipping operationa· is with respect toMδ defined in (10).

CARBAs are a particular example of more general, clipped regularized empirical
risk minimizers introduced in [14, Chapter 7.4]. We refer to this chapter for a discus-
sion of these learning methods including the existence of measurable versions.

Before we can establish an oracle inequality for CARBAs we finally need to present
a variance bound for two-sided losses. This is done in the following proposition, which
extends [4, Lemma 19].

Proposition 2.9 Let L be a strictly convex, twice continuously differentiable, classifi-
cation calibrated, and margin-based loss. We fix aδ with 0 < δ < 1/2 and defineMδ

by (10). We further write

C̃L(δ) := sup
{

2ϕ′(t)ϕ′(−t)(ϕ′(t) + ϕ′(−t))
ϕ′(−t)ϕ′′(t) + ϕ′(t)ϕ′′(−t)

− ϕ(t)− ϕ(−t) : t∈ [−Mδ,Mδ]
}

andCL(δ) := max{0, C̃L(δ)}. Then for all distributionsP onX ×Y and all measur-
able functionsf : X → [−Mδ,Mδ] we have

EP

(
Lδ ◦ f − L ◦ f∗Lδ,P

)2 ≤
(
ϕ(Mδ) + ϕ(−Mδ) + CL(δ)

)
EP

(
Lδ ◦ f − L ◦ f∗Lδ,P

)
.

Note that the strict convexity and differentiability ofϕ is actually only needed on
the interval[−Mδ,Mδ], if the Bayes decision functionf∗Lδ,P is uniquely determined.
Moreover, the same is true for the following theorem, which presents the already an-
nounced oracle inequality for CARBAs.
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Theorem 2.10 Let E be a separable Banach function space overX that consists of
bounded measurable functions and whose norm satisfies‖ · ‖∞ ≤ ‖ · ‖E . More-
over, letP be a distribution onX × Y andL be a margin-based loss that is strictly
convex, twice continuously differentiable, classification calibrated and Lipschitz con-
tinuous with|L|1 ≤ 1. In addition, assume that its representing functionϕ satisfies
ϕ(0) ≤ 1. We fix ann ≥ 1 and further assume that there exist constantsa ≥ ϕ(−Mδ)
andp ∈ (0, 1) such that

EDX∼Pn
X

ei

(
id : E → L2(DX)

)
≤ ai−

1
2p

for all i ≥ 1. Then there exists a constantK ≥ 1 only depending onL, δ, andp such
that, for all λ ∈ (0, 1], ε ≥ 0, andτ > 0, everyε-CARBA with respect toE and L
satisfies with probabilityPn not less than1− e−τ

λ‖
a
fD,λ‖E +RLδ,P(fD,λ)−R∗Lδ,P < 15A(λ)+K

( a2p

λ2pn

) 1
1−p

+K
τ

n
+

30A(λ)
λn

+3ε ,

where the approximation error function is with respectLδ.

Let us now briefly compare the consequences of Theorem 2.10 with those of The-
orem 2.4. To this end, we again consider a BFSE defined by Lemma 2.1. Obviously,
Theorem 2.10 yields consistency ofλn-CARBAs if we fix a sequence(λn) ⊂ (0, 1]
with λn → 0, λ2p

n n → ∞, andλnn ≥ 1 for all n ≥ 1. Moreover, if we assume that
there exist constantsc ≥ 0 andβ ∈ (0, 1] such thatA(λ) ≤ cλβ for all λ > 0, then
[14, Lemma A.1.7] shows thatλn := n−ρ, where2

ρ := min
{

1,
1

β(1− p) + 2p

}
,

asymptotically minimizes the right hand side of the oracle inequality of Theorem 2.10.
Obviously, this yields the learning raten−ρβ with respect to the riskRLδ,P, and by
(9), this rate can be immediately translated into a learning rate for binary classification.
Analogously to the learning rates derived from Theorem 2.4, these learning rates can
be further improved ifP, or equivalentlyP(δ), satisfies a Tsybakov noise assumption.

Finally note thatformally the learning ratesn−ρβ are faster than those derived
from Theorem 2.4, wheneverβ < 1, while for β = 1 both learning rates coincide.
However, strictly speaking we cannot compare both learning rates since they are based
on assumptions ondifferentapproximation error functions. In this direction we note
that the decision stumps considered by [4] only yieldβ = 1 for the logistic lossL
if x 7→ ln η(x)

1−η(x) has bounded variation. In particular,η(x) must be bounded away
from both 0 and 1. On the other hand, it is easy to check that the approximation error
function for a two-sided versionLδ of L satisfiesA(λ) ≤ cλ for a constantc ≥ 0 and
all λ > 0, if x 7→ η(x) has bounded variation. In particular, it isnot necessary that
η(x) is bounded away from zero and one, i.e., the faster learning rate of Theorem 2.10
holds under weaker assumptions onP. We conjecture, that this relationship between
the two approximation error functions holds in most situations.

2Note that this choice ofλn obviously requires knowledge onβ, which, in general, is not available.
However, sinceLδ can be clipped, the adaptive training/validation approach of [14, Chapter 7.4] can be
easily modified to CARBAs.
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3 Proofs

Proof of Lemma 2.1:We obviously have‖f‖E ≥ 0 for all f ∈ E, and it is also
obvious that‖f‖E = 0 if and only if f = 0. Now letf, g ∈ E have the representations
f =

∑
i∈I wiei andg =

∑
i∈I viei, where we note that our assumptions guarantee

that the sums converge pointwise absolutely. We then findf + g =
∑

i∈I(wi + vi)ei,
and hence we conclude

‖f + g‖E ≤
∑
i∈I

|wi + vi| ≤
∑
i∈I

|wi|+
∑
i∈I

|vi| .

Considering the infimum over all representations off andg, we then obtain the triangle
inequality for‖·‖E . The homogeneity of‖·‖E , i.e.,‖αf‖E = |α|·‖f‖E can be shown
analogously.

Let us now show that‖ · ‖E is complete3. To this end, we fix sequence(fj)j≥1 ⊂ E
with

∑∞
j=1 ‖fj‖E < ∞. Moreover, for allj ≥ 1, we fix a representation

fj =
∑
i∈I

w
(j)
i ei

such that
∑

i∈I |w
(j)
i | ≤ ‖fj‖E + 2−j . For i0 ∈ I we then have

∞∑
j=1

|w(j)
i0
| ≤

∞∑
j=1

∑
i∈I

|w(j)
i | ≤

∞∑
j=1

(
‖fj‖E + 2−j

)
< ∞ , (12)

and hencewi0 :=
∑∞

j=1 w
(j)
i0

does exists. Moreover, by ignoring the first inequality on
the left hand side of (12), we further see that (12) yields(wi)i∈I ∈ `1(I). Let us now
definef :=

∑
i∈I wiei ∈ E, where we note that this sums also converges pointwise

absolutely since(wi)i∈I ∈ `1(I) and all ei are assumed to be bounded functions.
Consequently, for allx ∈ X, we have

f(x)−
n∑

j=1

fj(x) =
∑
i∈I

(
wi −

n∑
j=1

w
(j)
i

)
ei(x) =

∑
i∈I

∞∑
j=n+1

w
(j)
i ei(x) ,

and from this we deduce∥∥∥ f −
n∑

j=1

fj

∥∥∥
E
≤

∑
i∈I

∣∣∣ ∞∑
j=n+1

w
(j)
i

∣∣∣ ≤ ∞∑
j=n+1

∑
i∈I

∣∣w(j)
i

∣∣ ≤ ∞∑
j=n+1

(
‖fj‖E + 2−j

)
≤ ε

for all sufficiently largen ∈ N. In other words, we have foundf =
∑∞

j=1 fj , where
the convergence is with respect to‖ · ‖E . From this we easily deduce the completeness
of ‖ · ‖E .

The separability ofE is trivial, and so is the fact that the measurability of allei implies
the measurability of allf ∈ E.

3One could shorten this part of the proof by using the fact theΨ : `1(I) → E defined by(wi)i∈I 7→P
i∈I wiei is, by definition, a metric surjection. However, we preferred to present an elementary proof.
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Finally, in order to show thatE consists of bounded functions, we fix anf ∈ E and a
representationf =

∑
i∈I wiei. We then obtain

‖f‖∞ =
∥∥∥∑

i∈I

wiei

∥∥∥
∞
≤

∑
i∈I

|wi|

and by taking the infimum over all representations, we thus find‖f‖∞ ≤ ‖f‖E .

3.1 Proofs of the results related to Theorem 2.4

Proof of Lemma 2.3:Besides the equivalence related to (5) all assertions follow by a
literal repetition of the proof of [14, Lemma 5.15]. Let us now assume that we have
A(λ) ≤ cλ for a constantc > 0 and allλ > 0. We fix aλ > 0 and anε > 0, and define
δ := εcλ. There then exists anfλ,ε such that

λ‖fλ,ε‖E ≤ λ‖fλ,ε‖E +RL,P(fλ,ε)−R∗L,P ≤ A(λ) + δ ≤ (1 + ε)cλ ,

and hence we concludefλ,ε ∈ (1 + ε)cBE . For fixedε > 0 andλ → 0 we further
concludeRL,P(fλ,ε) → R∗L,P, and therefore we find

inf
f∈(1+ε)cBE

RL,P(f) = R∗L,P

for all ε > 0. By letting ε → 0 we then obtain (5). Conversely, if (5) holds, there
exists, for allε > 0, anfε ∈ cBE such thatRL,P(fε) ≤ R∗L,P + ε. Consequently, we
find

A(λ) ≤ λ‖fε‖E +RL,P(fε)−R∗L,P ≤ cλ + ε

for all λ > 0 andε > 0. By lettingε → 0, we then obtainA(λ) ≤ cλ for all λ > 0.

In the following lemmas, we considerε-approximate regularized boosting algo-
rithms and their infinite sample counterparts. Before we can formulate these lemmas
we need to introduce one more notation. To this end, we fix a separable BFSE overX
that consists of bounded measurable functions, a loss functionL : Y ×R→ [0,∞), a
λ > 0, and anε ∈ [0, 1]. Then for allf ∈ E we definegf,λ : X × Y → R by

gf,λ(x, y) := λ‖f‖E + L(y, f(x))− λ‖fP,λ‖ − L(y, fP,λ(x)) , (13)

wherefP,λ denotes an arbitrary butfixed function satisfying (3) for some fixedε ∈
[0, 1].

The following lemma, which is needed for the proof of Theorem 2.4, establishes a
supremum bound ongf,λ.

Lemma 3.1 Let E be a separable BFS overX that consists of bounded measurable
functions and whose norm satisfies‖ · ‖∞ ≤ ‖ · ‖E . Moreover, letP be a distribution
on X × Y and L be a convex, Lipschitz continuous, and margin-based loss whose
representing functionϕ : R→ [0,∞) satisfiesϕ(0) ≤ 1, and whose Lipschitz constant
satisfies|L|1 ≤ 1. Then for all0 < λ ≤ 1 andf ∈ E we have

‖f‖E ≤ A(λ) + EPgf,λ + ε

λ
(14)

‖gf,λ‖∞ ≤ 4 · A(λ) + λ + EPgf,λ + ε

λ
(15)
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Proof: Let us fix anf ∈ E. Then we have

λ‖f‖E ≤ λ‖f‖E +RL,P(f)−R∗L,P

≤ λ‖fP,λ‖E +RL,P(fP,λ)−R∗L,P + EPgf,λ

≤ A(λ) + EPgf,λ + ε ,

and hence (14) follows. In order to show (15), we first observe that the Lipschitz
continuity ofϕ together withϕ(0) ≤ 1 impliesL(y, t) ≤ 1 + |t| for all y ∈ Y and
t ∈ R. By ‖ · ‖∞ ≤ ‖ · ‖E and (14), we consequently obtain∥∥λ‖f‖E + L ◦ f

∥∥
∞ ≤ λ‖f‖E + 1 + ‖f‖∞

≤ A(λ) + EPgf,λ + ε + 1 +
A(λ) + EPgf,λ + ε

λ

≤ 2 · A(λ) + λ + EPgf,λ + ε

λ
,

where in the last step we used0 < λ ≤ 1. Since this inequality holds for allf ∈ E,
we then obtain the assertion.

The following lemma translates the variance bound (6) into a bound onEPg2
f,λ.

Lemma 3.2 Let E be a separable BFS overX that consists of bounded measurable
functions and whose norm satisfies‖ · ‖∞ ≤ ‖ · ‖E . Moreover, letP be a distribution
on X × Y and L be a convex, Lipschitz continuous, and margin-based loss whose
representing functionϕ : R→ [0,∞) satisfiesϕ(0) ≤ 1, and whose Lipschitz constant
satisfies|L|1 ≤ 1. Assume that the variance bound (6) holds. Then for allλ ∈ (0, 1]
and allf ∈ 2λ−1BE we have

EPg2
f,λ ≤ 12 c λ−1

(
A(λ) + λ + EPgf,λ + ε

)2
.

Proof: We fix a λ ∈ (0, 1] and anf ∈ 2λ−1BE . Using the shorthandsE := EP,
g := gf,λ, and‖ · ‖ = ‖ · ‖E , as well as(a1 + a2 + a3)2 ≤ 3a2

1 + 3a2
2 + 3a2

3 for all
a1, a2, a3 ≥ 0, we then obtain

Eg2 = E
(
λ‖f‖ − λ‖fP,λ‖+ L ◦ f − L ◦ fP,λ

)2

≤ 3λ2‖f‖2 + 3λ2‖fP,λ‖2 + 3E
(
L ◦ f − L ◦ fP,λ

)2

≤ 6E
(
L◦f − L◦f∗L,P

)2 + 6E
(
L◦f∗L,P − L◦fP,λ

)2 + 3λ2‖f‖2 + 3λ2‖fP,λ‖2,

Let us writeC := max (‖f‖∞ + 1, ‖fP,λ‖∞ + 1). Then the assumption (6) implies

E
(
L ◦ f − L ◦ f∗L,P

)2 + E
(
L ◦ f∗L,P − L ◦ fP,λ

)2

≤ cC
(
E

(
L ◦ f − L ◦ f∗L,P

)
+ E

(
L ◦ fP,λ − L ◦ f∗L,P

))
.

By assumption we further haveλ‖f‖ ≤ 2, and sinceϕ(0) ≤ 1 andε ∈ [0, 1] we also
have

λ‖fP,λ‖ ≤ λ‖fP,λ‖+RL,P(fP,λ) ≤ RL,P(0) + ε ≤ 1 + ε ≤ 2 .
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Combining these estimates, we thus obtain

Eg2 ≤ 6 cC
(
E

(
L◦f − L◦f∗L,P

)
+E

(
L◦fP,λ − L◦f∗L,P

))
+3λ2‖f‖2+3λ2‖fP,λ‖2

≤ 6 cC
(
E

(
L◦f− L◦f∗L,P

)
+E

(
L◦fP,λ− L◦f∗L,P

)
+λ‖f‖+λ‖fP,λ‖

)
= 6 cC

(
Eg + 2E

(
L◦fP,λ− L◦f∗L,P

)
+ 2λ‖fP,λ‖

)
≤ 12 cC

(
A(λ) + λ + Eg + ε

)
.

Let us finally bound the constantC. To that end, observe that Lemma 3.1 implies

‖f‖∞ + 1 ≤ ‖f‖E + 1 ≤ A(λ) + λ + EPgf,λ + ε

λ

for all f ∈ E. Combining this estimate with our previous considerations then yields
the assertion.

Finally, we need to translate the entropy number bound assumed in Theorem 2.4
into an entropy number bound on certain sets of functions of the formgf,λ.

Lemma 3.3 Let E be a separable Banach function space overX that consists of
bounded measurable functions and whose norm satisfies‖ · ‖∞ ≤ ‖ · ‖E . Moreover, let
P be a distribution onX × Y andL be a Lipschitz continuous and margin-based loss
whose representing functionϕ : R → [0,∞) satisfiesϕ(0) ≤ 1, and whose Lipschitz
constant satisfies|L|1 ≤ 1. Assume that for a fixedn ≥ 1 there exist constantsa ≥ 1
andp ∈ (0, 1) such that

EDX∼Pn
X

ei

(
id : E → L2(DX)

)
≤ ai−

1
2p , i ≥ 1.

For λ ∈ (0, 1] andε > 0 with ε ≤ A(λ) + λ + ε, we define

Gε(λ) :=
{
gf,λ : f ∈ 2λ−1BE andEPgf,λ ≤ ε

}
.

Then we have

ED∼Pnei

(
Gε(λ), ‖ · ‖L2(D)

)
≤ cp a

A(λ) + λ + ε + ε

λ
i−

1
2p , i ≥ 1.

Proof: Let us fix aλ ∈ (0, 1] and anε > 0. ForΛ := A(λ)+λ+ε+ε
λ we then observe by

Lemma 3.1 that‖f‖E ≤ Λ for all f ∈ Gε(λ). Moreover,λ ≤ 1, ε ≤ 1, A(λ) ≤ 1, see
Lemma 2.3, andε ≤ A(λ)+λ+ ε, impliesΛ ≤ 6λ−1. Let us now define the auxiliary
sets

G := {λ‖f‖E + L ◦ f : f ∈ ΛBE} ,

R := {λ‖f‖E : f ∈ ΛBE} ,

H := {L ◦ f : f ∈ ΛBE} .
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The translation invariance and additivity of the entropy numbers, see the arguments on
pages 11 & 12 of [6] for the latter, then yields

ED∼Pne2i−1

(
Gε(λ), ‖ · ‖L2(D)

)
≤ ED∼Pne2i−1

(
G, ‖ · ‖L2(D)

)
≤ ED∼Pn

(
ei

(
R, ‖ · ‖L2(D)

)
+ ei

(
H, ‖ · ‖L2(D)

))
≤ ei

(
[0, 6], | · |

)
+ ΛEDX∼Pn

X
ei

(
BE , ‖ · ‖L2(DX)

)
≤ 3 · 2−i + aΛi−

1
2p

≤ c̃paΛ(2i− 1)−
1
2p ,

wherec̃p is a constant only depending onp. By the monotonicity of the entropy num-
bers, we then also find the assertion for even indices, if we increase the constantc̃p by
a factor only depending onp.

Proof of Theorem 2.4:We writeG(λ) := {gf,λ : f ∈ 2λ−1BE} and defineGε(λ) as
in Lemma 3.3. Moreover, we write

Λ(λ, ε) :=
A(λ) + λ + ε + ε

λ

for all λ ∈ (0, 1] andε > 0 with ε ≤ A(λ) + λ + ε. For gf,λ ∈ Gε(λ) we then have
‖gf,λ‖∞ ≤ 4Λ(λ, ε) andEPg2

f,λ ≤ 12cλΛ2(λ, ε) by Lemmas 3.1 and 3.2. Moreover,
Lemma 3.3 shows

ED∼Pnei

(
Gε(λ), ‖ · ‖L2(D)

)
≤ cp aΛ(λ, ε) i−

1
2p .

By symmetrization and [14, Theorem 7.16], which translates bounds on average en-
tropy numbers into bounds on local Rademacher averages, we thus find a constant
Cp ≥ 2c only depending onp andc such that

ωP,n(G(λ), ε) := ED∼Pn sup
g∈G(λ)
EPg≤ε

∣∣EPg − EDg
∣∣

= ED∼Pn sup
g∈Gε(λ)

∣∣EPg − EDg
∣∣

≤ Cp Λ(λ, ε) max
{
apλ

1−p
2 n−

1
2 , a

2p
1+p n−

1
1+p

}
.

We now defineε := A(λ)+λ+ ε, which impliesΛ(λ, ε) = 2ελ−1. ForK := 1024C2
p

andλ1+pn ≥ a2pK we hence obtain

ωP,n(G(λ), ε) ≤ 2 Cpε max
{
apλ−

1+p
2 n−

1
2 , a

2p
1+p λ−1n−

1
1+p

}
≤ ε

16
.

We further writeF := G(λ) and

C ◦ f := λ‖f‖E + L ◦ f .

Forβ := 1, b := 4/λ andB := 4 · A(λ)+λ+ε
λ we then see that the supremum bound (6)

of [15, Theorem 3.1] is satisfied. Moreover, the variance bound (7) of [15, Theorem
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3.1] is satisfied forv := ϑ := 1, w := 3c, andW := 3c(A(λ) + λ + ε). In addition,
λn ≥ Kτ andCp ≥ 2c imply√

2τ(bεβ + B)ν(wεϑ + W )
n

=

√
24τcλΛ2(λ, ε)

n
≤

√
96c

K
ε ≤ ε

4

and
2τ

(
bεβ + B

)
n

=
8τΛ(λ, ε)

n
=

8τε

λn
≤ ε

128
.

Using these estimates together with a repetition of the proof of [15, Theorem 3.1] for
a := 1/2 instead ofa = 0, we further see that everyε/2-ARBA satisfies

λ‖fD,λ‖E +RL,P(fD,λ)−R∗L,P < λ‖fP,λ‖E +RL,P(fP,λ)−R∗L,P + ε

with probabilityPn not smaller than1 − e−τ . Since we obviously haveλ/2 ≤ ε/2,
we then obtain the assertion forε → 0.

3.2 Proofs of the results related to Theorem 2.10

Proof of Lemma 2.5:The assertion immediately follows by combining [14, Lemma
2.23], [14, Lemma 3.12], and [14, Lemma 3.64].

For the proof of Lemma 2.7 and Proposition 2.9 we need some preparations. To
this end, we define, as in [14, Chapter 3], the inner risk of a loss functionL : Y ×R→
[0,∞) by

CL,η(t) :=
∫

Y

L(y, t) dQ(y) = ηL(1, t) + (1− η)L(−1, t) , t ∈ R ,

whereQ is a distribution onY andη := Q({1}). Obviously, theL-risk of a function
f : X → R can then be computed by

RL,P(f) =
∫

X

CL,η(x)(f(x)) dPX . (16)

Moreover, for0 < δ < 1/2 we defineη(δ) := (1−δ)η+δ(1−η). A simple calculation
then shows

CLδ,η(t) = η(1− δ)L(1, t) + ηδL(−1, t)
+(1− η)(1− δ)L(−1, t) + (1− η)δL(1, t)

= η(δ)L(1, t) + (1− η(δ))L(−1, t)
= CL,η(δ)(t) (17)

for all t ∈ R. Obviously, if we define the minimal inner risk of a lossL by

C∗L,η := inf
t∈R

CL,η(t) ,
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then Equation (17) yieldsC∗Lδ,η = C∗
L,η(δ) . Furthermore, we finally need the set

ML,η(0+) :=
{
t ∈ R : CL,η(t) = C∗L,η

}
,

which contains all global minimizers oft 7→ CL,η(t). Note that we always haveC∗L,η <

∞, and hence the definition ofML,η(0+) coincides with that on page 53 of [14].
Moreover, our considerations above showMLδ,η(0+) = ML,η(δ)(0+). The following
lemma collects some useful properties of the latter set.

Lemma 3.4 Let L 6= 0 be a convex, classification calibrated, and margin-based loss
represented byϕ : R → [0,∞). Moreover, we fix aδ ∈ R with 0 < δ < 1/2. Then,
for all η ∈ [δ, 1− δ], the function

t 7→ CL,η(t)

has a global minimum, i.e.,ML,η(0+) 6= ∅. Writing

Mδ := infML,1−δ(0+) = inf
{
t ∈ R : Lδ(1, t) ≤ Lδ(1, s) for all s ∈ R} ,

we further have0 < Mδ < ∞ and

ML,η(0+) ⊂ [−Mδ,Mδ] , η ∈ (δ, 1− δ) . (18)

Moreover, ifϕ is strictly convex,ML,η(0+) contains exactly one element, denoted by
t∗η, for all n ∈ [δ, 1− δ]. In this case,

η → t∗η

is a monotonically increasing function on[δ, 1 − δ], and the restrictionϕ|[−Mδ,Mδ] of
ϕ to [−Mδ,Mδ] is strictly decreasing.

Proof: The convexity of the representing functionϕ of L implieslimt→−∞ ϕ(t) = ∞
or limt→∞ ϕ(t) = ∞. From this we conclude thatlimt→±∞ CL,η(t) = ∞, and hence
the convexity oft 7→ CL,η(t) shows that this function has a global minimum.

To show the second assertion, we first observe thatMδ > 0 by the classification cali-
bration ofL and [14, Lemma 3.33]. Moreover, [14, Lemma 8.31] yields

supML,η(0+) ≤ infML,1−δ(0+) = Mδ , η < 1− δ

and

infML,η(0+) = − supML,1−η(0+) ≥ − infML,1−δ(0+) = −Mδ

for all η > δ.

For the proof of the last assertion, we first observe that the strict convexity ofϕ implies
thatt 7→ CL,η(t) is strictly convex, and hence this function has indeed a unique global
minimizer. The monotonicity ofη → t∗η then follows by another application of [14,
Lemma 8.31]. Finally, ifϕ is decreasing, the last assertion is trivial. On the other hand,
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if ϕ is not decreasing, [14, Lemma 8.37] shows thatt0 := inf{t ∈ R : 0 ∈ ∂ϕ(t)},
where∂ϕ(t) denotes the subdifferential ofϕ att, satisfies0 < t0 < ∞ and0 ∈ ∂ϕ(t0).
Consequently, we havet0 = infML,1(0+), and hence we obtain

Mδ ≤ supML,1−δ(0+) ≤ infML,1(0+) = t0

by yet another application of [14, Lemma 8.31]. Moreover, by the convexity ofϕ, we
see thatϕ is strictly decreasing on(−∞, t0], and hence the last assertion follows.

Proof of Lemma 2.7:i). Trivial.

ii). SinceLδ(1, t) = CL,1−δ(t) andLδ(−1, t) = CL,δ(t) for all t ∈ R, we see by
Lemma 3.4 that the functionst 7→ Lδ(1, t) andt 7→ Lδ(−1, t) have global minima at
Mδ and−Mδ, respectively. Using [14, Lemma 2.23], we then obtain the assertion.

iii). This is an immediate consequence of (17).

Proof of Proposition 2.9:Following Lemma 3.4 we denote the unique minimizer of
t 7→ CL,η(t) by t∗η. By (17) andη(δ) ∈ [δ, 1− δ] it is easy to see thatt∗

η(δ) is the unique
minimizer oft 7→ CLδ,η(t). Forη ∈ [0, 1] andt ∈ R we now define

M(η, t) := η
(
Lδ(1, t)− Lδ(1, t∗η(δ))

)2 + (1− η)
(
Lδ(−1, t)− Lδ(−1, t∗η(δ))

)2

E(η, t) := η
(
Lδ(1, t)− Lδ(1, t∗η(δ))

)
+ (1− η)

(
Lδ(−1, t)− Lδ(−1, t∗η(δ))

)
.

Obviously, it then suffices to show

M(η, t) ≤
(
ϕ(Mδ) + ϕ(−Mδ) + CL(δ)

)
E(η, t) (19)

for all η ∈ [0, 1] andt ∈ [−Mδ,Mδ]. To this end, we further define

N(η, t) := η
(
ϕ(t)− ϕ(t∗η)

)2 + (1− η)
(
ϕ(−t)− ϕ(−t∗η)

)2

D(η, t) := η
(
ϕ(t)− ϕ(t∗η)

)
+ (1− η)

(
ϕ(−t)− ϕ(−t∗η)

)
for η ∈ [δ, 1− δ] andt ∈ [−Mδ,Mδ]. SinceCL,η(t) = ηϕ(t) + (1− η)ϕ(−t), t ∈ R,
the minimizert∗η satisfies

ηϕ′(t∗η) = (1− η)ϕ′(−t∗η) (20)

for all η ∈ [δ, 1− δ]. As in the proof of [4, Lemma 19], we thus obtain

∂D

∂η
(η, t) =

(
ϕ(t)− ϕ(t∗η)

)
−

(
ϕ(−t)− ϕ(−t∗η)

)
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and

∂N

∂η
(η, t)

=
(
ϕ(t)− ϕ(t∗η)

)2 −
(
ϕ(−t)− ϕ(−t∗η)

)2

−2η
(
ϕ(t)− ϕ(t∗η)

)
ϕ′(t∗η)

∂t∗η
∂η

+ 2(1− η)
(
ϕ(−t)− ϕ(−t∗η)

)
ϕ′(−t∗η)

∂t∗η
∂η

=
((

ϕ(t)− ϕ(t∗η)
)
−

(
ϕ(−t)− ϕ(−t∗η)

))((
ϕ(t)− ϕ(t∗η)

)
+

(
ϕ(−t)− ϕ(−t∗η)

))
−2ηϕ′(t∗η)

((
ϕ(t)− ϕ(t∗η)

)
−

(
ϕ(−t)− ϕ(−t∗η)

))∂t∗η
∂η

=
((

ϕ(t)− ϕ(t∗η)
)

+
(
ϕ(−t)− ϕ(−t∗η)

)
− 2ηϕ′(t∗η)

∂t∗η
∂η

)
∂D

∂η
(η, t) ,

where we used (20) to obtain the second equality. We now define

Cδ := sup
{
−ϕ(t∗η)− ϕ(−t∗η)− 2ηϕ′(t∗η)

∂t∗η
∂η

: η ∈ [δ, 1− δ]
}

,

and observe by the last assertion of Lemma 3.4 that∂D
∂η (η, t) ≥ 0 if and only if t ≤ t∗η.

Consequently, we find

∂N

∂η
(η, t) ≤

(
ϕ(t) + ϕ(−t) + max{0, Cδ}

)∂D

∂η
(η, t)

for all η ∈ [δ, 1 − δ] andt ∈ [−Mδ,Mδ] satisfyingt ≤ t∗η. Analogously, we obtain
the inverse inequality fort ≥ t∗η. SinceN(η, t∗η) = D(η, t∗η) = 0 for all η ∈ [0, 1], the
fundamental theorem of calculus thus shows

N(η, t) ≤
(
ϕ(t) + ϕ(−t) + max{0, Cδ}

)
D(η, t) (21)

for all η ∈ [δ, 1− δ] andt ∈ [−Mδ,Mδ]. In order to estimateCδ, we now observe that

∂t∗η
∂η

= −
ϕ′(t∗η) + ϕ′(−t∗η)

ηϕ′′(t∗η) + (1− η)ϕ′′(−t∗η)
,

and hence (20) yields

−2ηϕ′(t∗η)
∂t∗η
∂η

=
(
ϕ′(t∗η) + ϕ′(−t∗η)

)
·

ηϕ′(t∗η) + (1− η)ϕ′(−t∗η)
ηϕ′′(t∗η) + (1− η)ϕ′′(−t∗η)

=
(
ϕ′(t∗η) + ϕ′(−t∗η)

)
· 2

ϕ′′(t∗η)

ϕ′(t∗η) + ϕ′′(−t∗η)

ϕ′(−t∗η)

.

From this we conclude

Cδ = sup
{

2ϕ′(t∗η)ϕ′(−t∗η)(ϕ′(t∗η) + ϕ′(−t∗η))
ϕ′(−t∗η)ϕ′′(t∗η) + ϕ′(t∗η)ϕ′′(−t∗η)

− ϕ(t∗η)− ϕ(−t∗η) : η∈ [δ, 1− δ]
}

.
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Furthermore, the monotonicity ofϕ on [−Mδ,Mδ], see Lemma 3.4, yields(
ϕ(t)− ϕ(t∗η(δ))

)(
ϕ(−t)− ϕ(−t∗η(δ))

)
≤ 0

for all η ∈ [0, 1] and allt ∈ [−Mδ,Mδ], and hence we have

M(η, t) = η
(
(1− δ)(ϕ(t)− ϕ(t∗η(δ))) + δ(ϕ(−t)− ϕ(−t∗η(δ)))

)2

+(1− η)
(
(1− δ)(ϕ(−t)− ϕ(−t∗η(δ))) + δ(ϕ(t)− ϕ(t∗η(δ)))

)2

= η(1− δ)2
(
ϕ(t)− ϕ(t∗η(δ))

)2

+ηδ2
(
ϕ(−t)− ϕ(−t∗η(δ))

)2

+(1− η)δ2
(
ϕ(t)− ϕ(t∗η(δ))

)2

+(1− η)(1− δ)2
(
ϕ(−t)− ϕ(−t∗η(δ))

)2

+2δ(1− δ)
(
ϕ(t)− ϕ(t∗η(δ))

)(
ϕ(−t)− ϕ(−t∗η(δ))

)
≤ η(1− δ)

(
ϕ(t)− ϕ(t∗η(δ))

)2

+ηδ
(
ϕ(−t)− ϕ(−t∗η(δ))

)2

+(1− η)δ
(
ϕ(t)− ϕ(t∗η(δ))

)2

+(1− η)(1− δ)
(
ϕ(−t)− ϕ(−t∗η(δ))

)2

= η(δ)
(
ϕ(t)− ϕ(t∗η(δ))

)2 + (1− η(δ))
(
ϕ(−t)− ϕ(−t∗η(δ))

)2

= N(η(δ), t)

where in the inequality we usedδ2 ≤ δ and(1 − δ)2 ≤ 1 − δ. Moreover, by (17) we
have

D(η(δ), t) = CL,η(δ)(t)− C∗L,η(δ) = CLδ,η(t)− C∗Lδ,η = E(η, t)

for all η ∈ [0, 1] andt ∈ R. In addition, we have

ϕ(t) + ϕ(−t) = 2CL,1/2(t) ≤ 2CL,1/2(Mδ) = ϕ(Mδ) + ϕ(−Mδ)

for all t ∈ [−Mδ,Mδ] by the convexity and symmetry oft 7→ CL,1/2(t). Combining
these considerations with (21) and bothη(δ) ∈ [δ, 1 − δ] andt∗

η(δ) ∈ [−Mδ,Mδ], we
then obtain (19).

Proof of Theorem 2.10:Our goal is to apply [14, Theorem 7.20]. To this end we define
Υ : E → [0,∞) by Υ(f) := λ‖f‖E , f ∈ E. By Lemma 3.4 we recall thatϕ is strictly
decreasing on the interval[−Mδ,Mδ], and hence we easily find

Lδ(y, t) ≤ ϕ(−Mδ) , y = ±1, t ∈ [−Mδ,Mδ] ,

i.e., the supremum bound (7.35) in [14] is satisfied forB := ϕ(−Mδ). Moreover,
Proposition 2.9 shows that the variance bound (7.36) in [14] is satisfied forϑ := 1 and
V := ϕ(Mδ) + ϕ(−Mδ) + CL(δ). In addition, we obviously haveV ≥ B2−ϑ. In the
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following, we pick a functionf0 ∈ E with λ‖f0‖E +RLδ,P(f0) −R∗Lδ,P ≤ 2A(λ).
The assumptions onL then yield

‖Lδ ◦ f0‖∞ ≤ 1 + ‖f0‖∞ ≤ 1 +
2A(λ)

λ
.

In the following, we thus setB0 := B+ 2A(λ)
λ . Last but not least, the definitions (7.32)

– (7.34) in [14] become

r∗ := inf
f∈E

λ‖f‖E +RLδ,P(
a
f )−R∗Lδ,P

Fr := {f ∈ E : λ‖f‖E +RLδ,P(
a
f )−R∗Lδ,P ≤ r} ,

Hr := {Lδ ◦
a
f − Lδ ◦ f∗Lδ,P : f ∈ Fr} ,

where the latter two sets are only defined forr > r∗. Now observe that forf ∈ Fr

we haveλ‖f‖E ≤ r, and hence we conclude thatFr ⊂ r
λBE . SinceLδ is Lipschitz

continuous with|Lδ|1 ≤ |L|1 ≤ 1, we thus find

ED∼Pnei(Hr, L2(D)) ≤ EDX∼Pn
X

ei(Fr, L2(DX)) ≤ 2rλ−1a i−
1
2p .

Moreover, forf ∈ Fr, we haveEP(L ◦a
f − L ◦ f∗L,P)2 ≤ V r, and consequently [14,

Theorem 7.16] shows that the Rademacher average in (7.37) of [14] is bounded by the
function

ϕn(r) := cL(δ, p)max
{

apr
1+p
2 λ−pn−

1
2 , a

2p
1+p r

2p
1+p λ−

2p
1+p n−

1
1+p

}
,

wherecL(δ, p) ≥ 1 is a constant only depending onL, δ, andp. Obviously, this
function does in general not satisfy the conditionϕn(4r) ≤ 2ϕn(r), r ≥ r∗, required
in [14, Theorem 7.20]. However, it satisfiesϕn(4r) ≤ 4

1+p
2 ϕn(r), r ≥ r∗, and since

1+p
2 < 1 is all we need for the peeling argument [14, Theorem 7.7] employed in the

proof of [14, Theorem 7.20], Condition (7.38) in [14] only changes by a constantcp in
front of 30ϕn(r). Consequently, Condition (7.38) reduces to

r > c̃L(δ, p)
( a2p

λ2pn

) 1
1−p

+
77V τ

n
+

10τA(λ)
λn

+ A(λ)

From this we easily obtain the assertion by [14, Theorem 7.20].
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